Simply study the module on this page, then complete the questionnaire to get instant feedback on your results which will help you to meet CIBSE’s requirement for CPD.

- Jul 15: Integrating gas-fired and electrical heat pumps with heating and hot-water systems
- Jun 15: Assuring good-quality ventilation in schools
- May 15: Integrating combined heat and power (CHP), condensing boilers and heat pumps in commercial heating systems
- Apr 15: The safe use of gas in education buildings
- Apr 15: Hot water provision in commercial applications – minimising legionella risk and maximising system efficiency
- Mar 15: Direct-fired storage water heaters for hot water generation
- Feb 15: Integrating Low Carbon Heat Sources Into Heat Networks
- Jan 15: Maintaining comfort, as well as efficiency, with VRV systems
- Dec 14: Liquid desiccants for dehumidification in building air conditioning systems
- Nov 14: Radiant heating with low temperature hot water
- Oct 14: Delivering ventilation to occupied spaces
- Sep 14: Moving towards interoperability in building services control
- Aug 14: Applying integrated gas-fired absorption heat pumps to bridge the energy performance gap in non-domestic buildings
- Jul 14: Building in flexibility for VRV systems to satisfy the demands of changing building use
- Jun 14: Applying chilled beams to reduce building total carbon footprint
- May 14: Evaluating and improving the performance of variable refrigerant flow air conditioning systems
- Apr 14: Setting safe foundations for internet-linked building control systems
- Mar 14: Evolving VRV beyond comfort conditioning
- Feb 14: Continuous airflow measurement in ventilation and air conditioning systems
- Jan 14: Measuring the thermal performance of glazing
- Dec 13: Ensuring best performance in variable refrigerant volume/flow systems
- Nov 13: Improving VRF systems
- Oct 13: Providing safe fume cupboards while moderating energy costs
- Sep 13: Corrugated stainless steel tube for use in domestic, commercial and industrial applications
- Aug 13: Application of small-scale combined heat and power
- Jul 13: The terminology and concepts used to determine the magnitude and direction of incident solar radiation
- Jun 13: Application of small-scale combined heat and power
- May 13: Textile-based ductwork distribution systems
- Apr 13: Air source VRF systems for flexible room heating and cooling, heat recovery and hydronic heating
- Mar 13: Continuous flow direct water heating for potable hot water
- Feb 13: Saving energy through simple HVAC heat recovery
- Jan 13: Simple thermal analysis for buildings
- Dec 12: Going transcritical with CO
_{2} - Nov 12: The development of requirements under the Ecodesign Directive
- Oct 12: Demand-controlled ventilation to reduce fan energy use
- Sep 12: A new energy management standard ISO 50001:2011
- Sep 12: Assuring the performance of fire dampers in buildings
- Aug 12: Condensing, continuous flow hot water heaters
- Jul 12: Preventing Legionnaires’ disease in building services
- Jun 12: Power quality for building electrical supplies
- May 12: Solar thermal continues to rise
- Apr 12: Cooling options for data centres
- Mar 12: Basic acoustic terminology for building services
- Feb 12: The performance of fans in ducted air systems
- Jan 12: Air source heat pumps
- Dec 11: Fans for ducted ventilation systems
- Nov 11: Matching the fan to the ventilation system
- Oct 11: Designing ducted air system pressure drops for low carbon operation
- Sep 11: Maintaining effective operational pressures in water distribution systems
- Aug 11: Airflow pressure drop in HVAC ductwork
- Jul 11: Commissioning processes for heating and cooling water distribution in buildings
- Jun 11: Determining U values for real building elements
- May 11: EPC Conventions
- May 11: Variations in thermal transmittance
- Apr 11: Indoor air quality
- Mar 11: Heat interface units
- Feb 11: Applying micro-hydro power generation
- Jan 11: Part L 2010 – new buildings
- Dec 10: Travelling into time with psychrometry
- Nov 10: Lighting control technologies and strategies to cut energy consumption
- Oct 10: Gas-absorption heat pumps
- Sep 10: Renewable and efficient heating
- Aug 10: Mini combined heat and power applications
- Jul 10: Evaporative cooling enhancement on air cooled chillers
- Jun 10: Commercial kitchen design for safety and energy efficiency
- May 10: Reducing operational energy consumption by deaeration and dirt removal in water systems
- Apr 10: The increasing potential for ground source heat pumps
- Mar 10: The psychrometrics of air conditioning systems
- Feb 10: Design of air source heat pump systems for heating and hot water
- Jan 10: Photovoltaics for buildings
- Dec 09: The psychrometrics of HVAC sub-systems
- Nov 09: Absorption refrigeration
- Oct 09: The Basic Psychrometric Processes
- Sep 09: Sensing the need for demand controlled ventilation
- Aug 09: Applying the psychrometric relationships
- Jul 09: The quiet revolution in chillers
- Jun 09: Radiant heating panels
- May 09: Heat pump technology
- Apr 09: The properties of air
- Mar 09: Refrigeration – inside the box
- Feb 09: Solar thermal – solar hot water heating

Content accurate at time of publication.

**The CPD article in the April edition of CIBSE Journal considered the majority of the properties of moist air that may be determined from a pair of coincident properties using the psychrometric chart. This article will continue to develop the formulae that may be used to calculate the properties and consider the comparative accuracy of using a chart compared with simple calculations**

Arguably the one process that determines whether a system is air conditioning, as opposed to simply ventilation, is the control of air moisture content. So a key requirement of psychrometric analysis is the ability to establish the vapour pressure that in turn can be used to calculate the air moisture content.

To establish the vapour pressure in air, p_{v}(kPa) the relationship based on Sprung’s original experiments with in the late 19th century known as the **psychrometric equation** may be used

p_{V} = p_{s}’ - p_{at} A(θ – θ’)

where, for a sling wet-bulb temperature,

A = 6.66x10^{-4}K^{-1} where θ’ ≥ 0 deg C

A = 5.94x10^{-4}K^{-1} where θ’ < 0 deg C

Where p_{s}’ is the saturation vapour pressure at the wet-bulb temperature that can be determined from tables or from the rather lengthy but suitably accurate empirical equation that is used to determine saturation vapour pressure, p_{s} (kPa)

log p_{s} = 30.5905 – 8.2 log (θ + 273.16) + 2.4804 x 10–3 (θ + 273.16) – [3142.31 / (θ + 273.16)]

and this is ideally suited to use in a spreadsheet or web tool (and is valid for temperatures above 0 deg C). Note that the saturation vapour pressure is not dependent upon the atmospheric pressure.

An element of the standard psychrometric chart that causes widespread uncertainty is the **specific volume** and more particularly its relationship with **density**. Many texts simply relate one as the inverse of the other - however there is a convention in the HVAC&R world that, for humid air, this is not the case.

The specific volume of moist air, v (m^{3}·kg^{-1}_{da}), is the volume of 1 kg **dry** air and its associated water vapour, so using the gas law pV = mRT,

v = V/m_{a} = R_{a}T/p_{a} = R_{a}T /(p_{at} – p_{v})

= 287·T/(p_{at} – p_{v})

where V is the volume occupied by the **moist** air, m_{a} is the mass of the dry air (that is combined with the mass of water vapour, m_{v}, to give [m_{a} + m_{v}] kg moist air), p_{a} is dry air partial pressure, p_{v} is water vapour partial pressure and p_{at} is atmospheric pressure.

Density, ρ (kg·m^{-3}), is the mass of moist air that occupies a volume of 1 m^{3}. To evaluate the mass of 1 m^{3} of moist air the masses of the dry air and the water vapour are added together.

So as m_{a}/V=p_{a}/R_{a}T and m_{v}/V=p_{v}/R_{v}T the overall density of the single unit volume of moist air will be (p_{a}/R_{a}T + p_{v}/R_{v}T).

Rearranging this and putting in values for R_{a} and R_{v} gives

ρ = (p_{at}/287·T)[1-(0.378·p_{v}/p_{at})] kg·m^{-3}

(with all pressures in Pa)

As an example consider air at 20.0 deg C dry bulb and 13.9 deg C wet bulb at an atmospheric pressure of 101.325 kPa = 101325Pa (ie standard atmospheric pressure).

To find the vapour pressure

p_{v} = p_{s}’ - p_{at} A (θ – θ’)

a value of p_{s}’ is required and so using...

log p_{s}’ = 30.5905 – 8.2 log (13.9 + 273.16) + 2.4804 x 10^{-3} (13.9 + 273.16) – [3142.31 / (13.9 + 273.16)]

and so p_{s}’ = 1.591 kPa.

Hence

p_{v} = 1.591 – [101.325 x 6.66 x 10^{-4} x (20 – 13.9)] = 1.179kPa

And so to determine v and ρ

v = 287·T / (p_{at} – p_{v}) = 287 (273+20)/(101325 - 1179) = 0.839 m^{3}·kg^{-1}

ρ = (p_{at}/287·T)[1-(0.378·p_{v}/p_{at})] = [101325/(287 x (273+20))][1-(0.378 x 1179/101325)] = 1.200 kg·m^{-3}

And to see what the practical difference is between the inverse of specific volume and density (at this particular condition) consider that the reciprocal of the specific volume calculated above is 1.192 and this compares with a density of 1.200 - a difference of less than 1 per cent. The difference will rise as moisture content increases and in conditions that are likely to prevail in heating, ventilation and air conditioning applications there is likely to be maximum of about 4 per cent difference at high temperatures and high moisture contents between the simple reciprocal value of specific volume and the true density.

Specific volume is particularly useful when undertaking calculations where there is a change in moisture content during a process (humidification and dehumidification), as the amount of dry air will remain constant while the amount of water vapour changes. However density is useful when measuring the flowrate of air through pressure drop devices (such as orifice plates).

Considering the formula for air density above, moist air is less dense than dry air. This may seem counter intuitive however the ideal gas law states that a fixed volume of air at a certain pressure has a fixed number of molecules and each of those molecules has a particular mass. Looking back at the previous article dry air is made up principally of nitrogen (N_{2}) and oxygen (O_{2}) molecules with molar masses of 28 and 32 respectively. Water vapour has a molar mass of 18. Hence, when a given volume of air has water molecules displacing other heavier molecules its overall mass and hence density will be less.

Using the relationships described in this, and the previous, article and using nothing more than a sling psychrometer and a psychrometric chart or a hand held calculator (mobile phone, palmtop etc) the properties of air may readily be obtained.

**Figure 1: Plotting psychrometric properties**

**Unit guide**

As an example the air point of 20 deg C dry-bulb and 13.9 deg C wet-bulb (sling) is shown in Figure 1. The dry-bulb and wetbulb temperatures may well have been obtained using a sling psychrometer in a room - the standard chart is drawn up for an atmospheric pressure, p_{at}, of 101.325kPa. The other properties may then be read directly off the chart with the specific enthalpy obtained by aligning a straight edge through the plotted air point so that the same value is read on both the ‘laddered’ specific enthalpy scales (shown with the black dashed line in Figure 1).

These values may also be calculated. So using the values obtained from the earlier example for air at θ = 20.0°C and θ’=13.9°C.

v was calculated as 0.839 m^{3}·kg^{-1} (compares with 0.84 m^{3}·kg^{-1} from the chart)

p_{v} is 1.179kPa (previously calculated)

and so

g = 0.622 p_{v}/(p_{at} – p_{v}) = 0.622 x 1.179/(1013.25-1.179) = 0.0073 kg·kg-1 (0.0074 kg/kg from chart)

To determine the percentage saturation the value of the saturated moisture content at the dry bulb temperature of 20 deg C is required. This can be obtained using the formula for g but using saturated vapour pressure (at the dry bulb temperature), p_{s}, in place of p_{v} to determine g_{s}. And p_{s} (at 20 deg C) can be obtained from

log p_{s} = 30.5905 – 8.2 log (20 + 273.16) + 2.4804 x 10^{-3} (20 + 273.16) – [3142.31 / (20 + 273.16)] and so p_{s} = 2.342 kPa.

g_{s} = 0.622 p_{s}/(p_{at} – p_{s}) = 0.622 x 2.342/(1013.25-2.342) = 0.0147 kg·kg^{-1}

μ = g/g_{s} x 100 = (0.0073/0.0147) x 100 = 50 per cent (compares with 50 per cent on chart)

Finally the Specific Enthalpy, h may be determined from

h = ( 1.005 θ) + g (1.89 θ +2501) = (1.005 x 20) + 0.0073 (1.89 x 20 + 2501) = 39 kJ·kg^{-1} (the same value as on chart).

There is evidently reasonable correlation between reading information off the chart and the calculated values and this should provide some confidence (and will be similarly accurate across the whole chart). However it is important to keep in mind that the accuracy of the output data can be no better than the measurements that have been taken on-site or, perhaps, read from a screen of a building management system (BMS). The perception may be that since, for example, a BMS output screen shows several significant figures that the measurement is precise. This is unlikely to be the case. Legg reports that the practical uncertainties in the measurement of wet-bulb temperatures can lead to significant uncertainties.

The wet-bulb sensor (whether a true wet-bulb or electronic sensor) is susceptible to contamination by both air borne contamination as well as finger grease. The wetted wick on a wet-bulb needs to stabilise at the wet bulb temperature before the temperature may be recorded. Tap water or other impure water can cause measurement errors when used to wet the wick, and if the wick (covering the bulb of a wet-bulb thermometer) is too long it will be affected by heat conducted from the thermometer.

Small variations in recorded temperature can translate into significant variations in percentage saturation. For example the gradations on the stem of a thermometer are likely to be 0.5 deg C – this alone will lead to an uncertainty of +/-2.5 per cent in the derived percentage saturation. To reduce possibilities of operator error devices such as the Assmann Psychrometer may be used to measure room air conditions (see Figure 2) – they have finer gradations on the temperature scales and provide a more consistent method of measurement with air being drawn over the thermometers by a small motor driven fan. This ensures that the air velocity is drawn across the wet bulb at the minimum required 1m·s^{-1}.

**Figure 2: Assmann Psychrometer (source: www.mesdan.com)**

In terms of practical application of the psychrometric chart it has been observed that many seasoned users prefer to use a thicker pen rather than a sharp pencil when plotting lines and identifying air points, as it builds in a clearly visible tolerance, or uncertainty, that reflects the real world challenge in obtaining an ‘accurate’ measurement.

A future article will apply the Psychrometric Chart to processes and systems.

**© Tim Dwyer**

**The CIBSE Journal CPD Programme**

Members of the Chartered Institution of Building Services Engineers (CIBSE) and other professional bodies are required to maintain their professional competence throughout their careers. Continuing Professional Development (CPD) means the systematic maintenance, improvement and broadening of your knowledge and skills, and is therefore a long term commitment to enhancing your competence. CPD is a requirement of both CIBSE and the Register of the Engineering Council (UK).

The Programme is free and can be used by any reader. It is organised jointly by CIBSE Journal and London South Bank University, and will help you to meet CIBSE’s requirement for CPD. It will equally assist members of other institutions, who should record CPD activities in accordance with their institution’s guidance.

Simply study the module and then complete the questionnaire online, and receive your results back by return email. Modules will remain available at www.cibsejournal.com/cpd whilst the information they contain remains current.